FRAUNHOFER AUSTRIA RESEARCH

Industry 4.0

State of the Art and Practical Examples

Riga, September the 6th, 2018

European Academy for Industrial Management

Prof. Dr. Wilfried Sihn

Fraunhofer Austria Research GmbH Division Production and Logistics Management

Vienna University of Technology Institute for Management Science Department Industrial and Systems Engineering

Agenda

- **▼ Fraunhofer Austria**Short Introduction
- **Digital Transformation**Digitization, Industry 4.0 and Industrial Data Science
- State of the Art
 Research and Best Practice Examples

Agenda

- **Image:** Fraunhofer Austria
 - **Short Introduction**
- **Digital Transformation**Digitization, Industry 4.0 and Industrial Data Science
- **State of the Art**Research and Best Practice Examples

Fraunhofer-Gesellschaft

The leading organisation for applied research in Europe

68 institutes, 80 research facilities 25 000 employees Austria Research GmbH

€ 2.2 bn. EUR research budget

vision Production and Logistics Divisio 2/3 of Project Turnover from Industry-Projectsement

1/3 of Project Turnover from Public Research-Projects

Oktober 18

© Fraunhofer Austria

Managing Director

1**2**ivioi0noreadets

3.000 customers

Univ.-Prof. Dr.-techn. Dieter W. Fellner East Lansing, MI

San José, CA

(iPickethat Exalending)

Plymouth, MI Washington, DC

ston, Mar.-Ing. Dr. h.c. Wi DESihn Lisbon,

Managing Director

Univ.-Prof. Prof. J.n

Budapest, Hungary Timisoara, Romania Vienna, Austria Graz, Austria

← Žilina, Slovakia

Moscow, Russia

Beijing,

72 institutes, 80 research facilities in Europe

2/3 by Project Turnover of Industry-Projects 1/3 by Project Turnover of Public Research-Projects

umbrella of Fraunhofer in Austria

Management in Vienna

~ 25 000 employees € 2.3 bn annual research budget

> South Korea Tokyo, Japan IM Assist II)

Seoul

Surface Technology and Photonics Information and Communication Technology

رnF L)

Fraunhofer Austria Research GmbH

Non-Profit GmbH as a legal entity under the

Division: Production and Logistics

Division: Visual Computing in Graz

Dubai, UAE Digital Soc ty (V/-

Y"tuai .

Industry 4.0 Road 14.0 Singapur Seml 4.0)

7 Alliances

Goteborg,

Jönköping,

Sweden

Sweden

- Microelectronics
 Designing Cyber-Physical Production Cystems (EPIC)
- acturing (addmanu) Production Value Added Chains formedaliting
- rodu Information and Communication Technology SPeCT)
 - Materials and Components ansport in the Danup ₄ion (ProKapa)
 - Life Sciences Maintenance 4.0 (BEinCCPS)
 - Surface Technology and Photonics Defence and Security

 Industrial Data Science

 Output

 Defence and Security

 Output

 Defence and Security

 Output

 Defence and Security

 Output

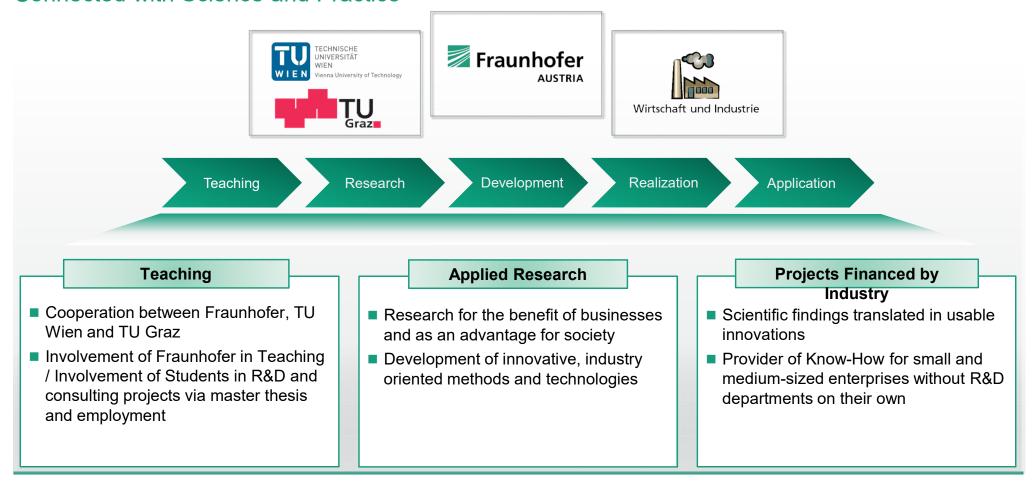
 Defence and Security

 Output

 Defence and Security

= Research

= Representative Office



Fraunhofer Austria Research GmbH

Connected with Science and Practice

TU Wien

Initiatives in Austria

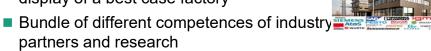
Plattform Industrie 4.0 Austria

 Industrie 4.0 Austria – the platform for intelligent production

Learning & Innovation Factory

- Display of a factory as a demonstration laboratory
- Learn environment for a hands on training of methods
- Industry-orientated and integrative education for industrial engineers

Doctoral College


- Initiative of TU Wien
- Productivity- and Employment-oriented Working System Design in CPPS
- Virtual Engineering Design of CPPS
- Cell Controller Design for Robotized Manufacturing Cells in the Smart Factory

& Innovation Factory

Pilot-Demonstration Plant

 Representation of a physical and virtual display of a best case factory

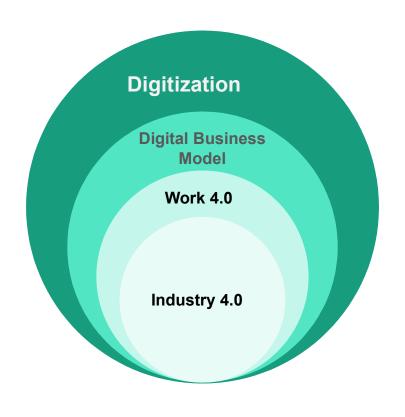
New prototypes, production technologies and systems as well as process technologies are tested together in a safe environment

Endowment Professorship

- Financed by:
 - Funding by BMVIT (Austrian Federal Ministry of Traffic, Innovation and Technology)
 - Equity capital of university
 - Cash payment of co-financing partners
- Includes the development and establishment of new research topics in Austria
 - → such as Human Centered Cyber Physical Production and Assembly Systems by Sebastian Schlund

Agenda

- **Fraunhofer Austria**Short Introduction
- **Digital Transformation**Digitization, Industry 4.0 and Industrial Data Science
- **State of the Art**Research and Best Practice Examples



Classification of Terms

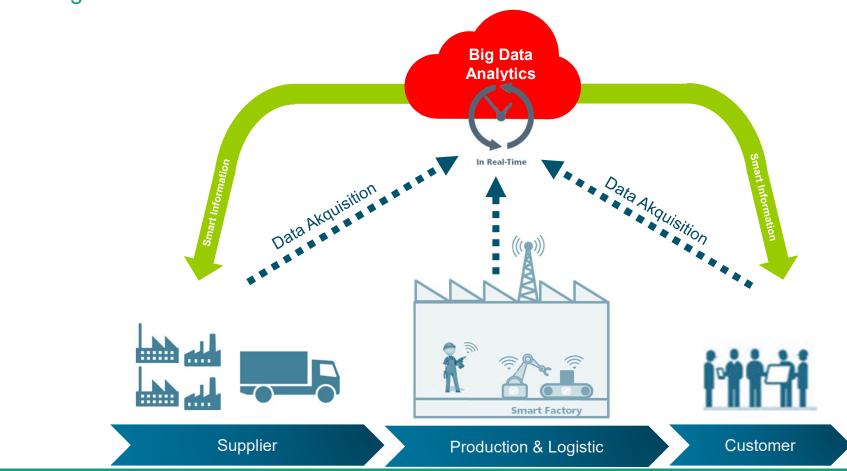
Digitization, Digital Business Models, Work 4.0, Industry 4.0

- **Digitization:** Conversion of analogue Information into digital, binary signals
- Digital Business Model: Innovation of business models driven by digitization
- Work 4.0: Impact of digital technologies and business models on the working environment
- Industry 4.0: Connecting humans, machines, products etc. in real time

Industry 4.0

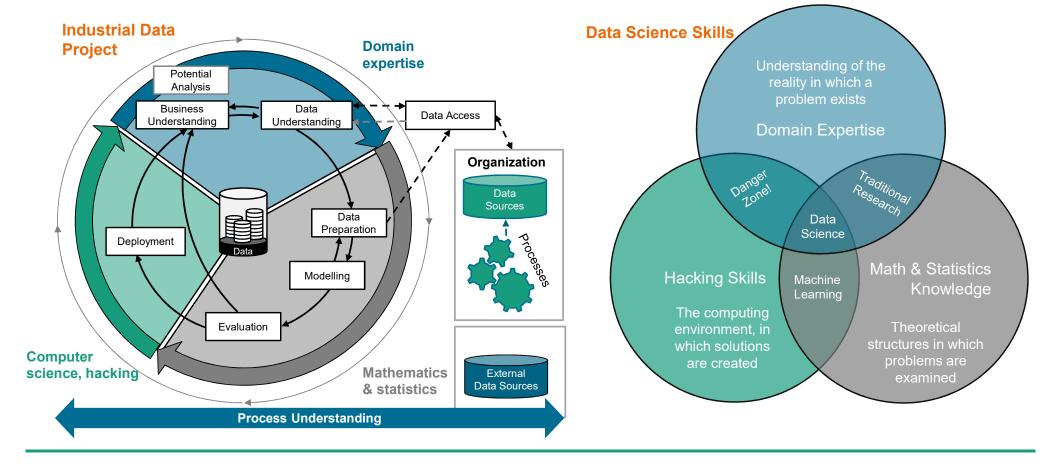
The Importance of Data

"Data is the Oil of the Future"



Industry 4.0

From Big-Data to Smart-Information

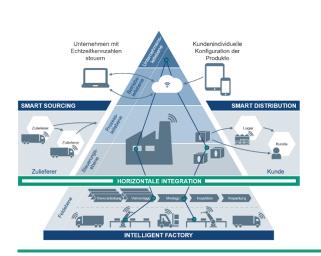


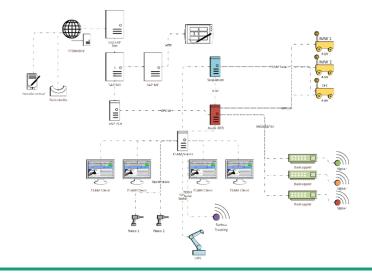
Industrial Data Science

Cross-industrial standard process for Data Mining (CRISP)

Agenda

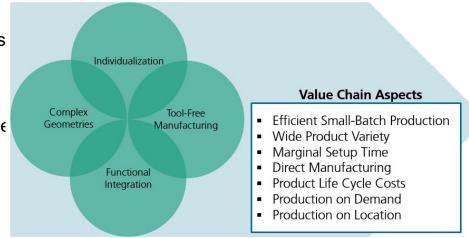
- **Fraunhofer Austria**Short Introduction
- **Digital Transformation**Digitization, Industry 4.0 and Industrial Data Science
- State of the Art
 Research and Best Practice Examples

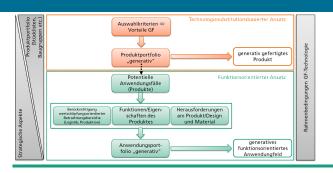




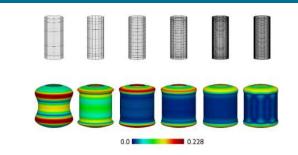
Vertical and horizontal data integration

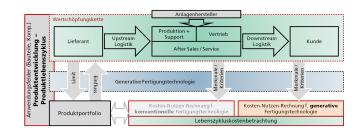
- Integration of the entire IT-Structure
 - vertical across all levels of the automation pyramid
 - horizontal across all technologies (inter alia IoT-Devices, visual, digital assistance systems) at the shop floor
- Fully integrated module management (lot size 1)
- Consistent information flow of individual customer order up to delivery
- Paperless order processing




Value Creation Systems and Business Model Development in Additive Manufacturing

Generative production technologies will **disrupt** the industry. They can be used as supplements to conventional technologies but to reach full potential, **business models** and **value chains** have to be **rethought**.


The research objectives of TU Wien and Fraunhofer in this proje are investigations from a product and value creation process perspective as well as business model development in additive manufacturing:


Identification of fields of application

Digital model creation and optimization

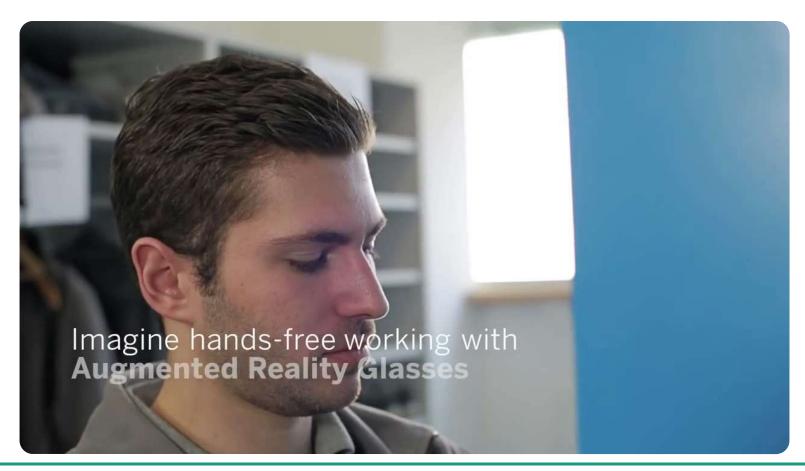
Implementation of generative value chain

Digital and Visual Assistance-Systems in Maintenance

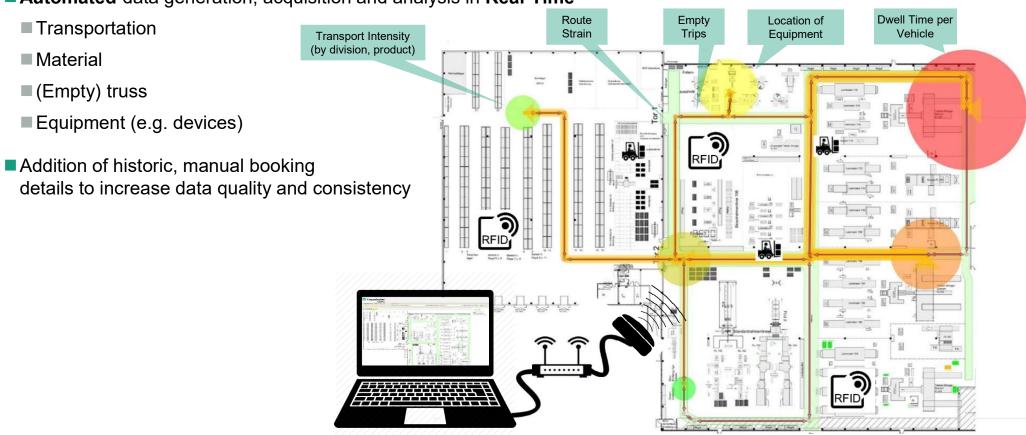
Development of an Augmented Reality Worker Guidance | Workers are guided step-by-step trough the process of changing the grab jaws via virtual information directly projected to the object, using voice and gesture control.

Approach

- Identification of potential assistance services
- Definition of technical and organizational interfaces
- Development and implementation of a demonstrator in the Pilot Demonstration Plant Industry 4.0
- Formulation of the worker information

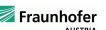


Digital and Visual Assistance-Systems in Maintenance

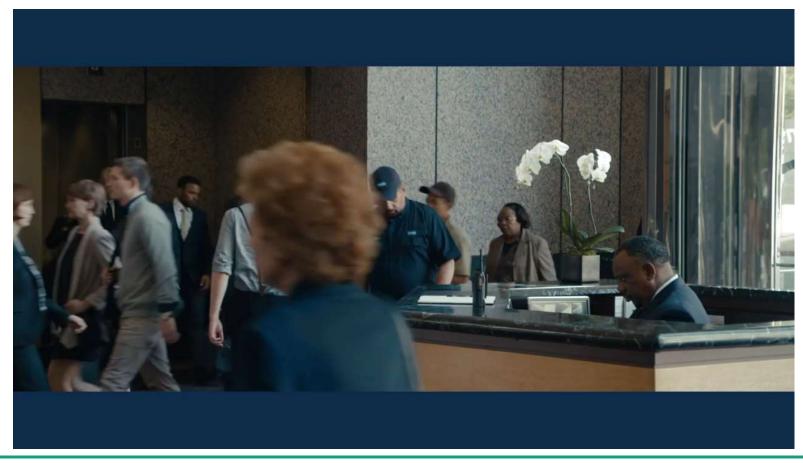


Position finding based material flow in Real-Time

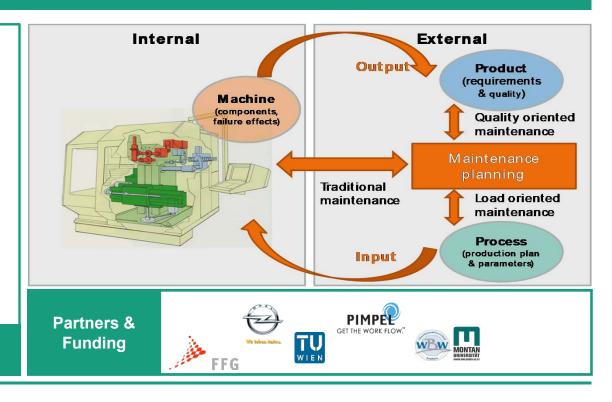
■ Automated data generation, acquisition and analysis in Real-Time



Prescriptive Maintenance Model (PriMa) Maintenance **Recommender Dashboard** Manager **Feedback** Aggregator Model-based **Predictive Data** Correlation Probability-**Textual** Learning **Analytic & Semantic** based analysis Regulator Meta-analysis **Learning Toolbox** Knowledge **Error based** Similarity-Information-Maintenance Knowledge-Base **Engineer** analysis based analysis based analysis **Datawarehouse Management & Cost Data** Work **Orders Operation Data Machine Data Product Data Process Data** In: F. Ansari, R. Glawar, & W. Sihn, Prescriptive Maintenance of CPPS by Integrating Multimodal Data with Dynamic Bayesian Networks, Machine Learning for Cyber Physical Systems, Springer, 2017



Smart Maintenance with Artificial Intelligence by IBM Watson


Overview and Project Goals

Maintenance 4.0 | Improving product quality and machine availability through a prescriptive maintenance control center

Development of a holistic maintenance planning approach to anticipate critical events through a maintenance control center and a mobile maintenance app.

Results:

- Maintenance Control Center & Mobile Maintenance App
- Reduction of downtime of 12-25% is demonstrated
- Improvement in the relationship between unplanned / planned downtime of 8-13%
- → Proactive and anticipative measures to prevent failures!

Digital Twin

Initial Situation

Precise planning and controlling not possible due to:

- Insufficient data basis
- Discontinuous IT-system
- Interface losses between disparate planning level

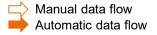
Simulation based planning and controlling tool rooted in a Real-Time, holistic and digital image of the production system.

Objective and Use

Tool using a Digital Twin for:

- Flexible production planning
- Dynamic and autonomous production controlling
- Multi-criteria production optimization
- Visualizing of Live-Dashboards





We are looking forward to accompanying you in innovative projects...

"Fraunhofer Austria – on behalf of the future"

Prof. Dr. Wilfried SihnFraunhofer Austria Research GmbH
Division Production and Logistics Management

Vienna University of Technology Institute for Management Science Department Industrial and Systems Engineering

Theresianumgasse 27 1040 Wien

Tel.: 0043 (1) 58801 33040 Fax: 0043 (1) 58801 33094

office@fraunhofer.at | www.fraunhofer.at

